Intelligent Decision Support System for Real-Time Water Demand Management

نویسندگان

  • Borja Ponte
  • David de la Fuente
  • José Parreño
  • Raúl Pino
چکیده

Environmental and demographic pressures have led to the current importance of Water Demand Management (WDM), where the concepts of efficiency and sustainability now play a key role. Water must be conveyed to where it is needed, in the right quantity, at the required pressure, and at the right time using the fewest resources. This paper shows how modern Artificial Intelligence (AI) techniques can be applied on this issue from a holistic perspective. More specifically, the multi-agent methodology has been used in order to design an Intelligent Decision Support System (IDSS) for real-time WDM. It determines the optimal pumping quantity from the storage reservoirs to the points-of-consumption in an hourly basis. This application integrates advanced forecasting techniques, such as Artificial Neural Networks (ANNs), and other components within the overall aim of minimizing WDM costs. In the tests we have performed, the system achieves a large reduction in these costs. Moreover, the multi-agent environment has demonstrated to propose an appropriate framework to tackle this issue.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Intelligent Decision Support System for Irrigation System Management

In this communication is considered the design of a decision support system for the short term water resource management of an irrigation system. The operations of similar systems are often impaired by different stochastic events like device failure, heavy rains or dry periods and new long term goals. To be effective, such a decision support system which is based on knowledge techniques (state ...

متن کامل

Development of system decision support tools for behavioral trends monitoring of machinery maintenance in a competitive environment

The article is centred on software system development for manufacturing company that produces polyethylene bags using mostly conventional machines in a competitive world where each business enterprise desires to stand tall. This is meant to assist in gaining market shares, taking maintenance and production decisions by the dynamism and flexibilities embedded in the package as customers’ demand ...

متن کامل

AN INTELLIGENT INFORMATION SYSTEM FOR FUZZY ADDITIVE MODELLING (HYDROLOGICAL RISK APPLICATION)

In this paper we propose and construct Fuzzy Algebraic Additive Model, for the estimation of risk in various fields of human activities or nature’s behavior. Though the proposed model is useful in a wide range of scientific fields, it was designed for to torrential risk evaluation in the area of river Evros. Clearly the model’s performance improves when the number of parameters and the actual d...

متن کامل

Decision Support System for Age-Related Macular Degeneration Using Convolutional Neural Networks

Introduction: Age-related macular degeneration (AMD) is one of the major causes of visual loss among the elderly. It causes degeneration of cells in the macula. Early diagnosis can be helpful in preventing blindness. Drusen are the initial symptoms of AMD. Since drusen have a wide variety, locating them in screening images is difficult and time-consuming. An automated digital fundus photography...

متن کامل

An Intelligent Decision Support System for Wastewater Treatment Plant Management

The paper describes the design of a finite state automaton which forms the kernel of an Intelligent Decision Support System that has been implemented and integrated into the existing supervisory control and data acquisition system at a medium scale municipal Wastewater Treatment Plant. The system provides real-time support and advice to the operators and the manager of the plant for a wide rang...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Computational Intelligence Systems

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016